LIFEBRIDGE HEALTH.

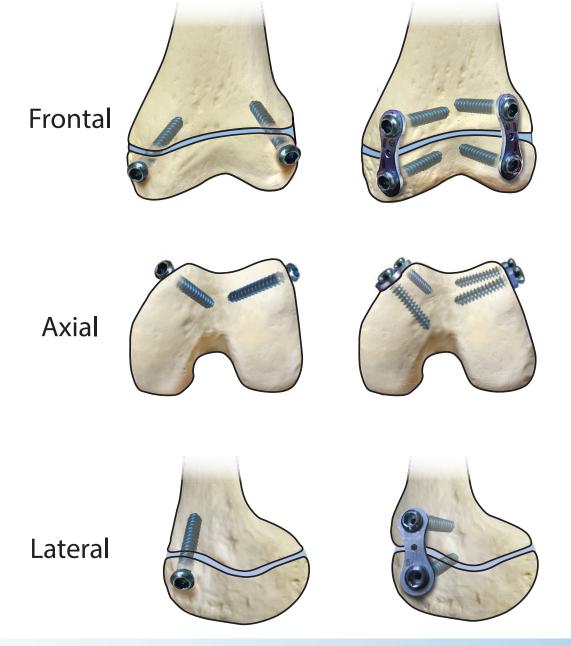
Rubin Institute for Advanced Orthopedics

CARE BRAVELY

Growth Modulation for Fixed Flexion Contracture of the Knee: A Comparison of Two Techniques

Philip K. McClure, MD,¹ Hamza M. Alrabai, MD,² Martin G. Gesheff, MS,¹ Shawn C. Standard, MD,¹ and John E. Herzenberg, MD¹

¹International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, USA ²King Saud University, Department of Orthopedics, Riyadh, Saudi Arabia


FDA Statement: All pharmaceuticals and devices were approved by the FDA for the uses described.

- treatment of coronal plane angular deformities in the lower extremities of children.¹
- Growth modulation with tension band plates for treatment of fixed knee flexion contracture is supported in the literature, with the expectation of improvement but not necessarily the resolution of contractures.^{2,3}
- Multiple devices and techniques are available to harness growth, including staples, screws, and combined screw and plate techniques.
- No studies are available that compare the various techniques of anterior growth modulation in the distal femur for fixed flexion contracture.
- Our aim is to compare two anterior distal femoral growth modulation techniques for fixed flexion contracture.

patients who underwent insertion of either 4.5-mm transphyseal screws (A) or anterior tension-band plates (B) into the anterior distal femoral hemiphysis for fixed flexion contracture (Figure 1).

- Radiographic parameters were evaluated preoperatively and at least 10 months after implantation:
 - Posterior distal femoral angle (PDFA)
 - Posterior proximal tibial angle (PPTA)
 - Anterior cortical line (ACL) measurement
- Hardware failures and migration were also evaluated.

Figure 1. Frontal, axial, and lateral views of the screws-only (A) and tension-band plate (B) constructs.

Results

Table 1. Summary of the main underlyingcauses of fixed flexion contracture among thestudy population.

- Six patients (10 knees) were excluded due to inadequate follow-up or radiographs.
- 29 knees (20 patients) (Table 1) were included in the study and were

Discussion

 Anterior distal femoral growth modulation improves sagittal alignment of the femur without affecting the sagittal alignment of the proximal tibia.

Condition	Patients	Knees		
Cerebral palsy	6	10		
Arthrogryposis	3	5		
Idiopathic FFC	2	2		
Pterygium syndrome	3	3		
Pierre Robin syndrome	1	2		
Marden-Walker syndrome	1	2		
Other neuromuscular	1	2		
Polio syndrome	1	1		
Tibial hemimelia	1	1		
Congenital femoral deficiency	1	1		
Total	20	29		

FFC, fixed flexion contracture.

treated with:

- Anterior tension-band plate construct: 13 knees (9 patients)
- Screws-only construct: 16 knees (11 patients)
- Duration of follow-up: 45 months (range, 10–96 months)
- Average age: 10.7 years (range, 3–14 years)
- Improvement in sagittal alignment was noted in both groups (Tables 2 and 3).
 - Statistically significant changes were noted in the PDFA in the tension-band plate group (p=0.0095), but not in the screws-only group (p=0.1813).
 - Anterior cortical line measurements demonstrated non-significant improvement of 28° on average in the plate group (p=0.0811), and minimal non-significant improvement in the screw-only group (p=0.6443).
 - PPTA did not significantly change in tension-band plate group (p=0.5242) or the screws-only group (p=0.6666).
- Rate of hardware migration was significantly different (p=0.008):
 - Anterior tension-band plate construct: 1 of 13 cases
 - Screws-only construct: 9 of 16 cases

Table 2. Comparison of final correction obtained in cases treated with tension-band plates or transphyseal screws.

- We recommend anterior tension-band plating instead of retrograde transphyseal screws to treat fixed flexion contracture of the knee due to the high failure rate secondary to screw migration.
- Correction magnitudes with tension-band plates are comparable to other series,^{2,3} with improvement in but not necessarily resolution of contracture measurements.
- Patients should be closely monitored for sagittal and coronal alignment during growth modulation for fixed flexion deformity.
- Analysis of other hardware configurations is warranted.

	Mean Change in PDFA	Mean Change in PPTA	Mean Change in ACL Measurement
Tension-band plates	11 .9 °	1.4°	28°
Transphyseal screws	3.6 °	0.8 °	1.4 °
P-value	0.0742	0.4391	0.0992

ACL, anterior cortical line; PDFA, posterior distal femoral angle; PPTA, posterior proximal tibial angle.

Table 3. Pre- and post-operative sagittal plane deformity measurements.

	PDFA			РРТА		ACL Measurement			
	Preop Mean	Postop Mean	P-value	Preop Mean	Postop Mean	P-value	Preop Mean	Postop Mean	P-value
Tension-band plates	86.8°	98.7°	0.0095*	84.2°	85.6°	0.5242	29.2°	1.2°	0.0811
Transphyseal screws	87.3°	90.9°	0.1813	83.5°	82.7°	0.6666	30.7°	29.3°	0.6443

*statistically significant; ACL, anterior cortical line; PDFA, posterior distal femoral angle; Postop, postoperative; PPTA, posterior proximal tibial angle; Preop, preoperative.

References

- 1. Saran N, Rathjen KE. Guided growth for the correction of pediatric lower limb angular deformity. *J Am Acad Orthop Surg.* 2010;18(9):528–36. Review.
- 2. Klatt J, Stevens PM. Guided growth for fixed knee flexion deformity. J Pediatr Orthop. 2008;28(6):626–31.
- 3. Macwilliams BA, Harjinder B, Stevens PM. Guided growth for correction of knee flexion deformity: a series of four cases. *Strategies Trauma Limb Reconstr.* 2011;6(2):83–90.