

Does Body Mass Index Influence the Outcomes of Using Magnetic Nails for Lower Extremity Lengthening in Children?

Gabriel S. Krivenko, BS,¹ Vivian L. Szymczuk, MD,² Ahmed I. Hammouda, MD,³ Josh A. Riederman, BS,⁴ Martin G. Gesheff, BS,⁵ and John E. Herzenberg, MD⁵

¹University of South Florida Morsani College of Medicine, Tampa, Florida, USA; ²University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA; ³Department of Orthopaedic Surgery, Al-Azhar University, Cairo, Egypt; ⁴Nova Southeastern University, Fort Lauderdale, Florida, USA; ⁵International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, USA

Disclosures: JEH is a consultant for Orthofix, OrthoPediatrics, NuVasive Specialized Orthopedics, and Smith & Nephew; receives research support from NuVasive Specialized Orthopedics; and is on the editorial board of the World Journal of Orthopaedics. GSK, VLS, AIH, JAR, and MGG have nothing to disclose.

Introduction

- Obesity may have negative effects on outcomes for various orthopedic procedures
- The purpose of this study is to assess the effect of BMI percentile on the types and rates of complications encountered during intramedullary (IM) limb lengthening in children

Methods

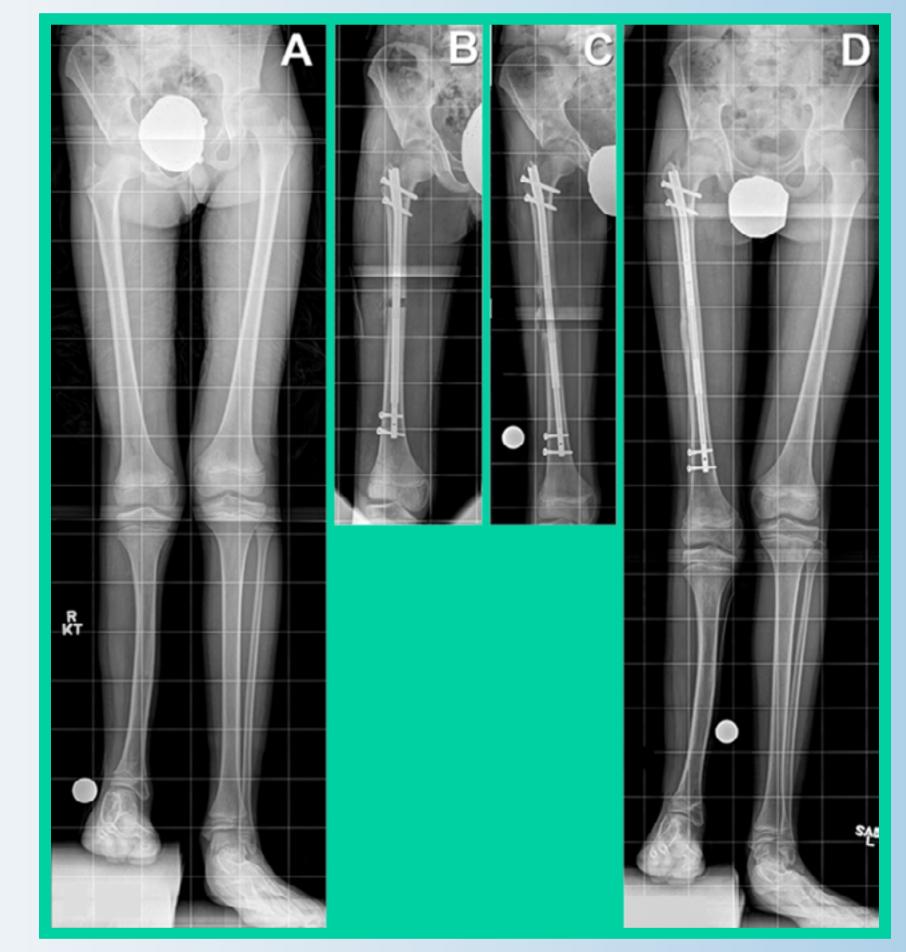
- Retrospective study included a total of 90 patients (100 lengthened segments)
- Normal defined as BMI percentile < 85%
- Overweight defined as BMI percentile ≥ 85%
- Average age = 14.4 years (range, 7.2–20 years)
- 100 segments (85 femora; 15 tibiae)
- All underwent IM limb lengthening

Results

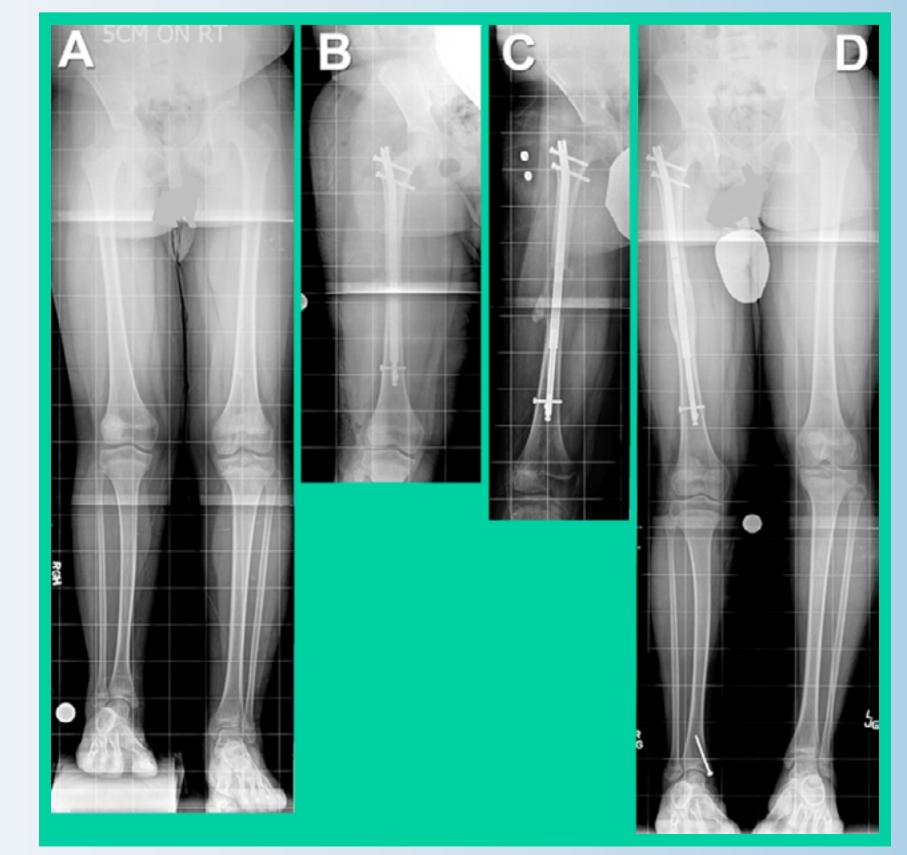
- Mean follow up time = 1.7 years (range, 1–3.5 years)
- Of the 100 segments, 62 bone segments were from normal weight children and 38 bone segments were in the overweight/obese group (Table 1)
- Mean BMI percentile for normal patients was 46.1% (Figure 1)
- Mean BMI percentile for overweight patients was 91.8% (Figure 2)
- Fifty patients encountered 73 complications (Table 2):
 - 41/73 from the normal BMI percentile group
 - 32/73 from the overweight BMI percentile group

Table 1. Demographic Data. Note that groups are very similar except for BMI percentile.

	Normal (n=62)	Overweight (n=38)	P Value
Mean patient age ± SD (years)	14.3 ± 2.7	14.5 ± 3.2	0.7896
Mean follow-up ± SD (years)	1.6 ± 0.8	1.7 ± 0.9	0.6755
Mean (BMI) percentile % ± SD	46.1 ± 25.4	91.8 ± 4.6	<0.0001
# Tibia with PRECICE (%)	10 (16.1%)	5 (13.2%)	0.6949
# Femur with PRECICE (%)	44 (71.0%)	27 (71.1%)	0.9915
# Femur with ISKD (%)	8 (12.9%)	6 (15.7%)	0.6964
Mean consolidation index (CI) (days/cm)	34.9 ± 16.3	31.6 ± 16.8	0.3314
Mean distraction index (DI) (mm/day)	1.5 ± 0.5	1.4 ± 0.5	0.4478


Table 2. Complications. The two groups did not have a statistically significant difference in the number of complications.

Normal


Overweight

P Value

	(n=62)	(n=38)	P value		
Patients with complications	29 (46.8%)	21 (55.2%)	0.4172		
Total complications	41	32	-		
Complications Breakdown (%):					
Contractures	8 (12.9%)	12 (31.6%)	0.1108		
Delayed union	12 (19.4%)	7 (18.4%)	0.3093		
Subluxation	6 (8.8%)	1 (2.6%)	0.0894		
Rod fracture/ failure	2 (3.2%)	4 (10.5%)	0.2647		
Nerve compression	3 (4.8%)	2 (5.3%)	0.8347		
Lengthening goal not achieved	3 (4.8%)	1 (2.6%)	0.4162		
Malunion/ Nonunion	1 (1.6%)	2 (5.3%)	0.4507		
Pre- consolidation	1 (1.6%)	1 (2.6%)	0.8928		
Screw failure/ revision	2 (3.2%)	0 (0%)	0.1984		
Infection	2 (3.2%)	0 (0%)	0.1984		
Other	1 (1.6%)	2 (5.3%)	0.0678		

Figure 1. Eleven-year-old boy with congenital femoral deficiency and fibular hemimelia. Right limb is 5.5 cm shorter than the left limb. BMI percentile is within normal range. **A,** Preoperative AP view full length standing radiograph. **B,** Immediate postoperative AP view radiograph of the right femur. **C,** AP view radiograph shows distraction is completed. **D,** AP view full length standing radiograph shows the fully consolidated femur with the lengthening goal achieved. Tibia will be lengthened in subsequent treatment.

Figure 2. Twelve-year-old boy diagnosed with congenital femoral deficiency and fibular hemimelia. Right limb is 5 cm shorter than the left limb. BMI percentile is 98%. **A,** Preoperative AP view full length standing radiograph. **B,** Immediate postoperative AP view radiograph of the right femur. **C,** AP view radiograph shows distraction is completed. **D,** AP view full length standing radiograph shows the fully consolidated femur. Lengthening goal was achieved.

Conclusion

- In this cohort of patients, there was no significant difference between normal and overweight pediatric patients in terms of complications and healing rates after IM limb lengthening surgery.
- Despite these results, surgeons must assess each patient individually to determine possible surgical risk.
- Future studies on larger cohorts with longer follow-up periods are required to confirm these results.